40,758 research outputs found

    Equations of motion in the linear approximation

    Get PDF
    Gauge invariant theory of motion of singularities in linear approximatio

    Electromagnetic vortex lines riding atop null solutions of the Maxwell equations

    Full text link
    New method of introducing vortex lines of the electromagnetic field is outlined. The vortex lines arise when a complex Riemann-Silberstein vector (E+iB)/2({\bm E} + i{\bm B})/\sqrt{2} is multiplied by a complex scalar function ϕ\phi. Such a multiplication may lead to new solutions of the Maxwell equations only when the electromagnetic field is null, i.e. when both relativistic invariants vanish. In general, zeroes of the ϕ\phi function give rise to electromagnetic vortices. The description of these vortices benefits from the ideas of Penrose, Robinson and Trautman developed in general relativity.Comment: NATO Workshop on Singular Optics 2003 To appear in Journal of Optics

    User involvement in healthcare technology development and assessment: Structured literature review

    Get PDF
    Purpose – Medical device users are one of the principal stakeholders of medical device technologies. User involvement in medical device technology development and assessment is central to meet their needs. Design/methodology/approach – A structured review of literature, published from 1980 to 2005 in peer-reviewed journals, was carried out from social science perspective to investigate the practice of user involvement in the development and assessment of medical device technologies. This was followed by qualitative thematic analysis. Findings – It is found that users of medical devices include clinicians, patients, carers and others. Different kinds of medical devices are developed and assessed by user involvement. The user involvement occurs at different stages of the medical device technology lifecycle and the degree of user involvement is in the order of design stage > testing and trials stage > deployment stage > concept stage. Methods most commonly used for capturing users’ perspectives are usability tests, interviews and questionnaire surveys. Research limitations/implications – We did not review the relevant literature published in engineering, medical and nursing fields, which might have been useful. Practical implications – Consideration of the users’ characteristics and the context of medical device use is critical for developing and assessing medical device technologies from users’ perspectives. Originality/value – This study shows that users of medical device technologies are not homogeneous but heterogeneous, in several aspects, and their needs, skills and working environments vary. This is important consideration for incorporating users’ perspectives in medical device technologies. Paper type: Literature review

    Medical device technologies: Who is the user?

    Get PDF
    A myriad of medical devices deployed by many users play an essential role in healthcare, and they, and their users, need to be defined, classified and coded effectively. This study provides definitions of terms frequently employed to describe the users of medical device technologies (MDT) as well as a classification of such users. Devices are widely used, developed and assessed by many others than clinicians. Thus, users of medical devices need to be classified in various relevant ways, such as primary and secondary users; user groups such as healthcare professionals, patients, carers, persons with disabilities, those with special needs, as well as professionals allied with healthcare. Proper definition and classification of MDT users is particularly important for integrating the users’ perspectives in the process of MDT development and assessment, as well as in relation to the regulatory, health and safety, and insurance perspectives concerning MDT

    Global Capitalism Theory and the Emergence of the Transnational Elites

    Get PDF
    The class and social structure of developing nations has undergone profound transformation in recent decades as each nation has incorporated into an increasingly integrated global production and financial system. National elites have experienced a new fractionation. Emergent transnationally-oriented elites grounded in globalized circuits of accumulation compete with older nationally-oriented elites grounded in more protected and often state-guided national and regional circuits. This essay focuses on structural analysis of the distinction between these two fractions of the elite and the implications for development. I suggest that nationally-oriented elites are often dependent on the social reproduction of at least a portion of the popular and working classes for the reproduction of their own status, and therefore on local development processes however so defined whereas transnationally-oriented elites are less dependent on such local social reproduction. The shift in dominant power relations from nationally- to transnationally-oriented elites is reflected in a concomitant shift to a discourse from one that defines development as national industrialization and expanded consumption to one that defines it in terms of global market integration.Elites, development, globalization, transnational, capitalism, crisis

    Intrinsic Variability and Field Statistics for the Vela Pulsar: 2. Systematics and Single-Component Fits

    Full text link
    Individual pulses from pulsars have intensity-phase profiles that differ widely from pulse to pulse, from the average profile, and from phase to phase within a pulse. Widely accepted explanations do not exist for this variability or for the mechanism producing the radiation. The variability corresponds to the field statistics, particularly the distribution of wave field amplitudes, which are predicted by theories for wave growth in inhomogeneous media. This paper shows that the field statistics of the Vela pulsar (PSR B0833-45) are well-defined and vary as a function of pulse phase, evolving from Gaussian intensity statistics off-pulse to approximately power-law and then lognormal distributions near the pulse peak to approximately power-law and eventually Gaussian statistics off-pulse again. Detailed single-component fits confirm that the variability corresponds to lognormal statistics near the peak of the pulse profile and Gaussian intensity statistics off-pulse. The lognormal field statistics observed are consistent with the prediction of stochastic growth theory (SGT) for a purely linear system close to marginal stability. The simplest interpretations are that the pulsar's variability is a direct manifestation of an SGT state and the emission mechanism is linear (either direct or indirect), with no evidence for nonlinear mechanisms like modulational instability and wave collapse which produce power-law field statistics. Stringent constraints are placed on nonlinear mechanisms: they must produce lognormal statistics when suitably ensemble-averaged. Field statistics are thus a powerful, potentially widely applicable tool for understanding variability and constraining mechanisms and source characteristics of coherent astrophysical and space emissions.Comment: 11 pages, 12 figures. Accepted by Monthly Notices of the Royal Astronmical Society in April 200

    Degeneracies when T=0 Two Body Interacting Matrix Elements are Set Equal to Zero : Talmi's method of calculating coefficients of fractional parentage to states forbidden by the Pauli principle

    Get PDF
    In a previous work we studied the effects of setting all two body T=0 matrix elements to zero in shell model calculations for 43^{43}Ti (43^{43}Sc) and 44^{44}Ti. The results for 44^{44}Ti were surprisingly good despite the severity of this approximation. In this approximation degeneracies arose in the T=1/2 I=(1/2)1−({1/2})^-_1 and (13/2)1−({13/2})^-_1 states in 43^{43}Sc and the T=1/2 I=(13/2)2−I=({13/2})_2^-, (17/2)1−({17/2})^-_1, and (19/2)1−({19/2})_1^- in 43^{43}Sc. The T=0 32+3_2^+, 72+7_2^+, 91+9_1^+, and 101+10_1^+ states in 44^{44}Ti were degenerate as well. The degeneracies can be explained by certain 6j symbols and 9j symbols either vanishing or being equal as indeed they are. Previously we used Regge symmetries of 6j symbols to explain these degeneracies. In this work a simpler more physical method is used. This is Talmi's method of calculating coefficients of fractional parentage for identical particles to states which are forbidden by the Pauli principle. This is done for both one particle cfp to handle 6j symbols and two particle cfp to handle 9j symbols. The states can be classified by the dual quantum numbers (Jπ,JÎœJ_{\pi},J_{\nu})

    Intrinsic Variability and Field Statistics for the Vela Pulsar: 3. Two-Component Fits and Detailed Assessment of Stochastic Growth Theory

    Full text link
    The variability of the Vela pulsar (PSR B0833-45) corresponds to well-defined field statistics that vary with pulsar phase, ranging from Gaussian intensity statistics off-pulse to approximately power-law statistics in a transition region and then lognormal statistics on-pulse, excluding giant micropulses. These data are analyzed here in terms of two superposed wave populations, using a new calculation for the amplitude statistics of two vectorially-combined transverse fields. Detailed analyses show that the approximately power-law and lognormal distributions observed are fitted well at essentially all on-pulse phases by Gaussian-lognormal and double-lognormal combinations, respectively. These good fits, plus the smooth but significant variations in fit parameters across the source, provide strong evidence that the approximately power-law statistics observed in the transition region are not intrinsic. Instead, the data are consistent with normal pulsar emission having lognormal statistics at all phases. This is consistent with generation in an inhomogeneous source obeying stochastic growth theory (SGT) and with the emission mechanism being purely linear (either direct or indirect). A nonlinear mechanism is viable only if it produces lognormal statistics when suitably ensemble-averaged. Variations in the SGT fit parameters with phase imply that the radiation is relatively more variable near the pulse edges than near the center, as found in earlier work. In contrast, Vela's giant micropulses come from a very restricted phase range and have power-law statistics with indices (6.7±0.66.7 \pm 0.6) not inconsistent with nonlinear wave collapse. These results imply that normal pulses have a different source and generation mechanism than giant micropulses, as suggested previously on other grounds.Comment: 10 pages and 14 figures. Accepted by Monthly Notices of the Royal Astronomical Society in April 200
    • 

    corecore